
 

 

  
Abstract— A procedure for obtaining a lower bound estimate of 

the critical load for a homogeneously deformed Mooney-Rivlin 
incompressible cylinder is presented. By considering a lower bound 
estimate for the second variation of the total energy functional based 
on the Korn inequality, we establish sufficient conditions for the 
infinitesimal Hadamard stability of a distorted configuration. We then 
sketch the procedure for determining an optimal lower bound 
estimate of the critical load in a uniaxial compressive loading process 
and discuss its effectiveness for applications by comparing our results 
to other estimates proposed in the literature. 
 

Keywords— Non-linear elasticity, bifurcation, stability, lower 
bound estimates. 

I. INTRODUCTION 
Nonlinear elasticity is a suitable theoretical framework for 

modeling a number of phenomena experienced by solid bodies 
undergoing large elastic deformations. New research issues 
(cf., e.g., [1-2]) concern the analysis of solid-solid phase 
transformations for materials characterized by non-convex 
strain energy density functions, whereas classical issues are the 
stability of large elastic deformations and the possibility of 
bifurcations related to the loss of stability.  
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For a large class of mechanical problems, the instability 

phenomena may be related both to the material response and to 
the overall features of the particular boundary value problem.  

In these cases, the nonlinear material response together with 
the geometry of the body and the boundary conditions 
contribute to the onset of instabilities, and consequently the 
stability problem becomes much more complex. Even by 
performing a local stability analysis, i.e., by studying the 
stability in a neighborhood of the given fundamental 
equilibrium deformation, explicit results are available only for 
very special cases.A relative simplification in a local stability 
analysis  may be obtained by employing the classical method 
of adjacent equilibria, i.e., by checking if there exist other 
equilibrium solutions close to the given primary equilibrium 
state through the analysis of the linearized equilibrium 
equations from the fundamental deformation. This approach 
also shows the close correlation between bifurcation and 
stability issues. In this vein, the Hadamard criterion of 
infinitesimal stability (cf. [3], §68 bis) is a classical and widely 
used tool for testing the stability of an equilibrium 
configuration, since the violation of the so-called Hadamard 
stability condition plays the role of an indicator of possible 
bifurcations from the primary equilibrium. Indeed, in a 
monotonic loading process governed by a loading parameter, it 
is usually assumed that the body remains in the fundamental 
equilibrium state (no bifurcation allowed) until the Hadamard 
stability condition ceases to hold. Then, possible bifurcation 
modes may arise at the critical load λcr, defined as the value of 
the load parameter which first renders the Hadamard 
functional zero. 

All the above considerations show that a crucial issue is the 
study of the sign of the Hadamard functional, which actually is 
not a simple matter. This motivates the development of 
procedures for determining lower bound estimates for the 
critical load λcr, i.e., a load λLB below which the infinitesimal 
stability criterion is definitely satisfied. These procedures are 
mainly based on the use of the Korn inequality like, for 
example, the lower bound estimates proposed in [4]-[7].  

It is important to emphasize that the availability of a lower 
bound estimate for the critical load may be particularly useful 
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in bifurcation problems. Indeed, during a loading process one 
usually identifies the load which corresponds to a special 
bifurcation mode with the load which first renders the 
Hadamard functional zero, but with reference to a particular 
subclass of incremental displacements. Then, one may wonder 
if such a special solution is actually the first bifurcation mode 
(among other bifurcations) which occurs during the prescribed 
loading process, and consequently if the corresponding 
bifurcation load is actually the “true” critical load and not an 
upper bound for the critical load. Since it is extremely difficult 
to check the sign of the Hadamard functional on the whole 
class of admissible incremental displacements, a possible 
answer may be obtained by checking whether the gap between 
the bifurcation load related to the special bifurcation mode and 
the lower bound estimate for the critical load is sufficiently 
small or not. 

In this context, we proposed in [8] a new procedure for 
determining a lower bound estimate λLB for λcr in the case of 
hyperelastic solids; there, we obtained interesting 
improvements on the available estimates by enhancing both 
the quality of the estimate and the easiness of the application 
of the procedure. In [8], we also developed some 
considerations concerning the relation between upper and 
lower bound estimates for the critical load with reference to 
the analysis in [9] of a bifurcation from a homogeneous 
fundamental deformation. As a possible development of this 
research line, we are currently analyzing the possibility of 
extending this approach to a case of inhomogeneous 
deformation by considering the bifurcation problem in [10] as 
a representative example. 

Here, by adopting an approach similar to that in [11] for 
incompressible bodies, we consider the homogeneous uniaxial 
compression of a Mooney-Rivlin incompressible, isotropic, 
homogeneous elastic cylinder. In particular, we provide some 
remarks concerning the effectiveness of the considered 
estimates by evaluating the gap between the lower bound 
estimate and the critical load. Moreover, we discuss the 
effectiveness of our procedure by comparing our estimates to 
those obtained in [7]. As a major result, we find that our lower 
bound estimate globally improves the estimate proposed in [7] 
and that our procedure is advantageous for applications, since 
it yields a very simple method for estimates which is easily 
implementable in numerical codes. More explicitly, our 
procedure only requires the determination of the incremental 
elasticity tensor, the principal Cauchy stresses, the Lagrange 
multiplier related to the incompressibility constraint and the 
Korn constant. 

In the future, we intend to apply our method for the 
determination of lower bound estimates of the critical load by 
considering special (but representative) boundary-value 
problems inspired by the analyses in [12]-[14]. 

II. BOUNDS FROM BELOW OF THE HADAMARD FUNCTIONAL 
FOR A CLASS OF BOUNDARY-VALUE PROBLEMS 

In this Section, we first refer to a class of boundary-value 

problems in order to obtain a suitable format of the Hadamard 
functional for a Mooney-Rivlin incompressible cylinder. Then, 
we determine a lower bound estimate of the Hadamard 
functional based on the Korn inequality, which allows to 
establish sufficient conditions for the infinitesimal stability of 
a distorted configuration. 

We consider a homogeneous, isotropic incompressible 
elastic circular cylinder C with radius R0 and height H0 and 
name 0 0 0: H Rρ = its referential slenderness ratio. Although 
the procedure we develop below is general, here we assume 
that the mechanical response of C is modeled by the 
Mooney-Rivlin strain energy density function  

 

( ) ( ) ( )1 2C CW = I 3 + II 3 ,
2 2

F − −  (1) 

 
where F denotes the deformation gradient, which must satisfy 
the incompressibility constraint  

 
det 1.F =  (2) 
 
In (1), the quantities  

 

( )I : tr ,F F B= ⋅ =    ( )T T 1II : trF F B− − −= ⋅ =  (3) 

 
are a set of two principal invariants of the left Cauchy-Green 
strain tensor T :=B F F  and C1, C2 are positive material 

constants with ( )1 2: 2 C +Cµ =  the referential shear modulus.  
We further assume that the body may undergo uniquely 

homogeneous, isochoric deformations determined by the 
following form of the strain tensor: 

 
( )2 2 =   +  ,B e e I e eλ λ ⊗ α − ⊗  (4) 

 
where the constant axial stretch 0λ >  acts as the load 
parameter, 0α >  is the constant cross sectional stretch, and e 
coincides with the axis of C. In particular, the 
incompressibility constraint (2) relates α to the parameter λ as 
follows: 
 

1/2 = ;−α λ  (5) 
  
thus, the strain tensor (4) at a given equilibrium configuration 
determined by the stretch 0λ > may be written as  
 

( )2 1 =   +  ,B e e I e e−
λ λ ⊗ λ − ⊗  (6) 

 
which shows that Bλ

  has two equal principal stretches in the 
cross section of the cylinder that are different from the stretch 
along the axis of the cylinder.  

It is worth noting that the representations (4) or (6) for a 
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homogeneous equilibrium strain tensor are shared by a number 
of significant mixed or all around dead load tractions 
boundary-value problems like, for example, the uniaxial 
compression and the uniaxial extension of a circular cylinder 
(see, e.g., [11]), the dead-load equibiaxial traction on the 
lateral surface of a parallelepiped accompanied by an 
orthogonal uniaxial compression of the same amount on the 
bases (see, e.g., [11], [12], and [14], and the uniform traction 
of a cube, namely the well-known Rivlin’s cube problem (see, 
e.g., [15]-[16]).  

In correspondence of an equilibrium strain tensor (6), the 
equilibrium total Cauchy stress Tλ  for an isotropic 
incompressible Mooney-Rivlin elastic material has the form 
(see, e.g., [3] 

 

( ) ( )
( ) ( )

T 2 2
1 2

1
1 2

 = W p C  C    

C  C      p

FT F F I e e

I e e I

−
λ λ λ λ

−
λ

− = λ − λ ⊗ +

λ − λ − ⊗ −

 

 (7) 

 
where ( )WF ⋅  denotes the derivative of W with respect to F 

and pλ , the “pressure-like” field related to the 
incompressibility constraint, must be constant in order to 
satisfy the equilibrium field equations and, in particular, it is 
determined form the traction boundary conditions. 

We now particularize to the present situation of 
homogeneous deformations a general method developed in [8] 
and [11] (also valid for inhomogeneous deformations) for the 
determination of a lower bound estimate of the Hadamard 
functional. We assume that an equilibrium configuration 
determined by the parameter 0λ > is known and recall that the 
Hadamard criterion of infinitesimal stability for 
incompressible bodies (see [17]) sets that an equilibrium 
deformation ( )f Xλ

  with gradient ( )F Xλ
 is stable if the 

second variation of the total energy functional is non-negative 
for each divergence-free admissible incremental displacement 

( ):u u x=   (from the deformed configuration) which vanishes 
on the constrained boundary. Under the current assumptions, 
this condition on the second variation of the total energy may 
be written as follows: 

 

( ) [ ] ( ) ( )T: grad grad  p grad grad  0,u u u u u
Ω Ω

λ λε = ⋅ + ⋅ ≥∫ ∫
 

  (8) 

 
where λ

 is the fourth-order instantaneous elasticity tensor 
defined as follows: 
 

[ ] ( ) T
F = W  FN F N F Fλ λ λλ

  
    (9) 

 
for each second order tensor N. Notice that in the present 
analysis λ

  is constant because we are dealing with 

homogeneous deformations; in particular,  λ
  is determined 

by the material parameters C1, C2, which are implicitly 
assumed as prescribed, and by the constant stretch λ which is 
known from the equilibrium problem. The functional (8) is 
commonly called the Hadamard functional. 

We now sketch the main steps for determining first a 
suitable format of the integrand function in (8) and then a 
bound from below for the whole functional (8). We first 
introduce the decomposition 
 
grad :   + ,u H E W= =  (10) 
 
where E is symmetric and traceless, because of the 
incompressibility constraint, and W is skew-symmetric. Using 
(9) for the class of Mooney-Rivlin materials (1), with the aid 
of some calculations based on the general procedure in [11, 
section  2] we get 

 

[ ] ( )
( ) ( )

T 1 2
1 2 + p   = C  3C  p

 2  + ,

H H H H B B I E

WT E WT W

−
λ λ λλ

λ λ

λ ⋅ ⋅ + + ⋅

+ ⋅ ⋅

 
 (11) 

 
where Bλ

  and Tλ , respectively given by (4) and (7), are 
clearly coaxial tensors. It is then convenient to introduce a 
orthonormal basis { }1 2, , i i e built on the principal directions of 

Tλ , where 1 2, i i  are two orthogonal arbitrary directions in the 
cross section of the cylinder since two principal stretches of  
Tλ  are equal. In such a basis, we define the components of E 
and W as follows: 
 

{ } { }

{ } { }

{ } { }

1 2 3 12 23 31

1 2 3 11 22 33

1 2 3 12 23 31

,  ,  := E , E , E ,

,  ,  := E , E , E ,

,  ,  := W , W , W ,

γ γ γ

ε ε ε

ω ω ω

 (12) 

 
so that we readily have 

 

( )
( )

2 2 2
1 2 3

2 2 2 2 2 2 2
1 2 3 1 2 3

 = 2 ,

 =  +   +2 .

W W

E E I E

⋅ ω + ω + ω

⋅ ⋅ = ε ε + ε γ + γ + γ
 (13) 

 
In view of the analysis we develop in the next section for the 

case of uniaxial compression, we make the further hypotheses 
that the principal stretch ] [0,  1λ ∈ , so that the two equal 

principal Cauchy stresses 1 2t , t  in the cross section of the 
cylinder are always greater than the principal 3t  stress along 
the axis. Indeed, by (7) we easily see that  

 
1 2 2

1 2 1 2 3 1 2t t : t C  C  p t : C C p ,− −
λ λ= = = λ − λ − > = λ − λ −  (14) 
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provided that ] [0,  1λ ∈ and that the material moduli are 
positive, as it occurs under the current assumptions. Then, by 
(7), (14) and (12) we immediately have  

 
( ) ( )

( )( ) ( )( )2 2 2
1 3 2 3 3 2 2 3 3

2  + 

2 t t t t t 2 2

WT E WT Wλ λ⋅ ⋅ =

ω + + ω + ω − − ω γ + ω γ
 (15) 

 
We now denote λη  as any real number such that 
 

3t t 0λη + + >  (16) 
 

and consider the following inequalities (see (14) and (16)): 
 

( )

( ) ( )( )

( ) ( )( )

2
1

2
3 2 3 2

2
3 3 3 3

2t 0

t t t t 0

t t t t 0.

λ

λ

λ

η + ω ≥

− γ − η + + ω ≥

− γ − η + + ω ≥







 (17) 

 
Then, by adding together the terms in (17) we obtain   

 

( )( ) ( )( )

( ) ( ) ( )

2 2 2
1 3 2 3 3 2 2 3 3

2
3 2 2 2 2 2

2 3 1 2 3
3

2 t t t t t 2 2

t t
.

t t λ
λ

ω + + ω + ω − − ω γ + ω γ ≥

−
− γ + γ − η ω + ω + ω

η + +




 (18) 

 
Thus, in view of (15), it follows that   
 

( ) ( )

( ) ( ) ( )
2

3 2 2 2 2 2
2 3 1 2 3

3

2  + 

t t
.

t t

WT E WT Wλ λ

λ
λ

⋅ ⋅ ≥

−
− γ + γ − η ω + ω + ω

η + +

∫

∫ ∫



 





C

C C

 (19) 

 
We now determine a bound from below for the left-hand 

side term in (19) by using the well-known Korn inequality (see 
[18]) 

 

( )  1  W W E Eλ⋅ ≤ κ − ⋅∫ ∫
 



C C

, (20) 

 
where the Korn constant  1λκ ≥  depends either on the 
geometry of the cylinder or on the constrained boundary of 
C, where the displacement are prescribed. By (13)1 we see 
that  

 
2 2 2
1 2 3

1  ; 
2

W Wλ λ− η ⋅ = −η ω + ω + ω∫ ∫
 

 

C C

 (21) 

thus, we may distinguish two cases determined by inequality 
(20).  
Case a)  For 0λη ≤  the terms in (21) are positive or equal to 
zero and consequently from (19) we have the bound from 
below 
 

( ) ( ) ( ) ( )
2

3 2 2
2 3

3

t t
2  + ,

t t
WT E WT Wλ λ

λ

−
⋅ ⋅ ≥ − γ + γ

η + +∫ ∫
 



C C

 (22) 

 
which does not involve the Korn inequality. 
 
Case b)  For 0λη > , by (20)-(21) it follows that  

 

( )

2 2 2
1 2 3

1   
2

1 1   ,
2

W W

E E

λ λ

λ λ

− η ⋅ = −η ω + ω + ω ≥

− κ − η ⋅

∫ ∫

∫

 



 

 

C C

C

 (23) 

 
and consequently, in view of (13)2, a lower bound for the left-
hand side term of (19) is now given by  

( ) ( ) ( ) ( )

( ) ( )

2
3 2 2

2 3
3

2 2 2 2 2 2
1 2 3 1 2 3

t t
2  + 

t t

1 1   +   +2 .
2

WT E WT Wλ λ
λ

λ λ

−
⋅ ⋅ ≥ − γ + γ

η + +

− κ − η ε ε + ε γ + γ + γ

∫ ∫

∫

 





 

C C

C

 (24) 

 
We now complete the estimate from below of the functional 

(8) by analyzing the first term in the right-hand side of (11). 
To this aim, we let λβ be any real number such that 

 

( )1 2
1 2C

 
 3C  p

: min
B B I E

E E

−
λ λ λ

λ

 + + ⋅ β =  
⋅  

 



E
 (25) 

 
for each symmetric, traceless tensor E, so that it results (see 
(13)2) 

 

( ) ( )

( )

1 2
1 2

2 2 2 2 2 2
1 2 3 1 2 3

C  3C  p

 +   +2 .

B B I E E E−
λ λ λ λ

λ

+ + ⋅ ≥ β ⋅ =

β ε ε + ε γ + γ + γ

∫ ∫

∫

 



 



C C

C

 (26) 

 
Consequently, by (8), (11), (22) and (26) we have the 
following possibility, which is related to the Case a) above 
discussed. 
 
Case a) 0λη ≤  
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( ) ( )

( ) ( )

2 2 2 2 2 2
1 2 3 1 2 3

2
3 2 2

2 3
3

 +   +2

t t
;

t t

u λ

λ

ε ≥ β ε ε + ε γ + γ + γ

−
− γ + γ

η + +

∫

∫









C

C

 (27) 

 

thus, since by (16) it results 
( )2

3

3

t t
0

t tλ

−
− ≤

η + +

, we readily have 

 

( ) ( ) ( )

( )

2
3

3

2 2 2 2 2 2
1 2 3 1 2 3

t t1: 2
2 t t

                         +   +2 ,

u u λ
λ

  −  ε ≥ ℵ = β −
  η + +  

 
ε ε + ε γ + γ + γ 

 
∫






C

 (28) 

 
which clearly shows that the lower bound ( )uℵ  for the 

Hadamard functional ( )uε  is non-negative for any admissible 
incremental displacement u if there exists a real number 

λβ satisfying (25) and at least one value of λη  satisfying (16) 
such that 

 

( ) ( )
( )

2
3

3

t t
f :

2 t tλ λ
λ

−
β ≥ η =

η + +






. (29) 

 
Case b) 0λη >  
 
In view of (8), (11), (24) and (26), we now have 

 

( ) ( ) ( )

( ) ( )

2 2 2 2 2 2
1 2 3 1 2 3

2
3 2 2

2 3
3

1 1   +   +2
2

t t
;

t t

u λ λ λ

λ

 ε ≥ β − κ − η ε ε + ε γ + γ + γ 
 

−
− γ + γ

η + +

∫

∫







 



C

C

(30) 

 
therefore, we obtain the bound from below 

 

( ) ( ) ( ) ( )

( )

2
3

3

2 2 2 2 2 2
1 2 3 1 2 3

t t1: 2 1  
2 t t

 +   +2 ,

u u λ λ λ
λ

  −  ε ≥ ℑ = β − κ − η −
  η + +  

 
ε ε + ε γ + γ + γ 

 
∫




 



C

 (31) 

 
which shows that the lower bound ( )uℑ  for ( )uε  is non-
negative for any admissible incremental displacement u if 
there exists a real number λβ satisfying (25) and at least one 
value of λη  satisfying (16) such that 
 

( ) ( ) ( )
( )

2
3

3

t t1g : 1  
2 t tλ λ λ λ

λ

 −
 β ≥ η = κ − η +
 η + + 



  



. (32) 

  
It is worth noting that inequalities (29) and (32) play the 

role of sufficient conditions for the Hadamard stability (8), 
since they represent sufficient conditions for the non-negativity 
of the lower bound estimates ( )uℵ  and ( )uℑ  of the 

Hadamard functional ( )uε , respectively. Furthermore, Case 
a) and Case b) may discussed altogether by introducing the 
function (see (29) and (32)) 
 

( )

( )
( )

( ) ( )
( )

2
3

3

2
3

3

t t
if   0

2 t t
h :  

t t1 1  if   0;
2 t t

λ
λ

λ

λ λ λ
λ

 −
 η ≤

η + +
η = 
  −  κ − η + η >

  η + + 







  



(33) 

 
thus, a sufficient conditions for the Hadamard stability (8) 
requires the determination of a real number λβ satisfying (25) 
and of a value of λη  satisfying (16) such that 
 

( )hλ λβ ≥ η

 . (34) 
 
Clearly, the smaller is ( )h λη  the higher is the possibility of 
successfully fulfilling inequality (34). Having this in mind, the 
“optimal” choice of λη  satisfying (16) is here obtained by 

choosing the value of λη  in correspondence of which ( )h λη  
attains its infimum. To this aim, we now need to briefly discuss 
the main features of the function ( )h λη . 

We note from (16) and (14) that ( )h λη is strictly positive 
and such that  

 

( )
( ) ( )

  +  t t3
lim h   + ,     lim h  +λ λ

η → ∞η → − + λλ

η = ∞ η = ∞




 

, (35) 

 

( )

( )
( )

( )
( )

2
3

2
3

2
3

2
3

t t
  0 if   0

2 t + t  + 
h = 

t t1 1   if  > 0,
2 t + t  + 

λ
λ

λ

λ λ
λ

 −− < η ≤
 η′ η 

  − κ − − η
  η 







 



, (36) 

 

( ) ( )
( )

( )
2

3
33

3

t t
h  =   > 0  t + t .

t + t  + 
λ λ

λ

−
′′ η ∀ η > −

η
 



 (37) 

 
Therefore, the function ( )h λη is positive and strictly convex 
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for ( )3t + tλη > − , and it is strictly decreasing for 0.λη <  If 

we then consider the unique real number 1η  that makes the 

first derivative ( )h λ′ η in (36)2 zero, that is   
 

( ) ( ) ( ) ( )1/2
1 3 3 3 1 t t t + t  > t + t ,−

λη = κ − − − −   (38) 
 

we conclude that, for ( )3t + tλη > − , 
 

( )
( )

( )

1 3 3 1

3 1

h  if  t + t  0  or  t + t  0 and  > 0

inf  h

h 0   if  t + t  0  and   0
λ

 η ≤ > η
η = 


> η ≤

 





(39) 

 
so that (34) is replaced by the optimal sufficient inequality for 
the Hadamard stability  

 

( ) ( )3inf  h ,    with    t + t .λ λ λβ ≥ η η > −

   (40) 

 

Notice that for the evaluation of the Korn constant in (38) it is 
convenient to use the classical estimate of Bernstein and 
Toupin [19]:  
 

( )
( )

( ) ( )

2

2

12  2 + if   3
3 + 

2  2 +  if   3,
3

λ

λ

κ = ρ λ ≤ ρ λ


κ = ρ λ ρ λ ≥






      (41) 

 
 
where  
 

( ) ( )
( )

3/20
01/2

0

H  H
 =  =  =  

R  −

λ λ
ρ λ ρ λ

λ λ ρ
        (42) 

 
is the slenderness ratio of the deformed circular cylinder and 

0 0 0Hρ = R  is the undistorted slenderness ratio. 
 

III. LOWER BOUND ESTIMATE OF THE CRITICAL LOAD IN A 
UNIAXIAL COMPRESSIVE LOADING PROCESS 

The procedure developed in the previous section is closely 
related to stability issues, since it yields conditions under 
which a deformed configuration is Hadamard stable. However, 
our method may be also employed for analyzing bifurcation 
problems through the classical approach of adjacent equilibria, 
wherein one usually considers a monotonic loading process 
ruled out by a parameter λ  and checks if there is a “critical” 
value λcr of the load in correspondence of which the primary 
equilibrium deformations ceases to be Hadamard stable and a 

possible bifurcation mode may arise.  
In such a context, the critical load λcr may be defined as the 

value of the load parameter which first renders the Hadamard 
functional zero, whereas the lower bound estimates λLB for the 
critical load may be considered as a load below which the 
infinitesimal Hadamard stability criterion is definitely 
satisfied. In particular, according to the discussion of the 
previous section, a bound from below λLB of the critical load 
λcr may be defined as  the smallest value of the load λ in 
correspondence of which the inequality (40) is violated for the 
first time.  

It is important to emphasize that the availability of a lower 
bound estimate for the critical load may not represent by itself 
a satisfactory information in bifurcation problems. Indeed, 
during a loading process one usually identifies the load 
corresponding to a special bifurcation mode with the load 
which first renders the Hadamard functional zero, but with 
reference to a particular subclass of incremental 
displacements. Then, one may wonder if such a special 
solution is actually the first bifurcation mode (among other 
bifurcations) which occurs during the prescribed loading 
process, and consequently if the corresponding bifurcation 
load is actually the “true” critical load and not an upper bound 
estimate for the critical load. Since it is extremely difficult to 
check the sign of the Hadamard functional on the whole class 
of admissible incremental displacements, a possible answer 
may be obtained by checking whether the gap between the 
bifurcation load related to the special bifurcation mode and the 
lower bound estimate for the critical load is sufficiently small 
or not. 

In this Section, by following arguments partly developed in  
we sketch a procedure for determining an optimal lower bound 
estimate of the critical load in a uniaxial compressive 
monotonic loading process for the incompressible Mooney-
Rivlin cylinder C.  

We then assume that the body forces are zero and that the 
cylinder is subject to the mixed dead-load boundary-value 
problem defined by zero traction on the lateral surface, zero 
tangential traction on the bases, and prescribed normal 
displacements at the bases. These prescriptions clearly 
correspond to a homogeneous uniaxial deformation. Since by 
the above the homogeneous fundamental deformation and the 
total Cauchy stress are determined by (6) and (7), respectively, 
then the boundary condition 

 
3 ,         0T n 0 n eλ = ⋅ =                (43) 

 
on the lateral surface of the cylinder immediately determines 
the “pressure-like” field: 

 
1

1 2p  = C  C  −
λ λ − λ .                 (44) 

 
Thus, by substituting (44) into (7), we obtain the following 
expression for the total Cauchy stress: 
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( )=  T e eλ σ λ ⊗ ,                       (45) 

 
where  
 

( ) ( ) ( ) ] [3 2
1 2: C  C  1 0    for   0,  1−σ λ = λ + λ − λ < λ ∈    (46) 

 
shows that Tλ  corresponds to a compressive axial stress. 

We now consider a monotonically decreasing loading 
process starting from the undistorted configuration, in order to 
evaluate the lower bound estimate λLB of the “critical” 
compressive stretch λcr, at which the Hadamard stability 
criterion is violated for the first time. Notice that at  λcr, 
possible bifurcation modes may occur.  

We emphasize that our approach for calculating λLB is 
somewhat easy. Indeed, given the geometry of the body by 
assigning the undistorted slenderness ratio 0 0 0Hρ = R and 
the material parameters C1, C2, we consider a decreasing 
sequence of values for λ starting from λ =1,  and for each 
λ  we calculate the principal stress ( )σ λ  using (46), the Korn 

constant by means of (41)-(42), Bλ
  by (6) and λβ  in (25) by 

employing, for example, a numerical minimization tool. 
Furthermore, since by (45)-(46) we have for the principal 
Cauchy stresses ( )1 2 3t t t 0   and  t 0= = = = σ λ < , then 

( )3t t 0+ = σ λ <  and consequently (see (39) and (38)) 

( ) ( )1inf  h hλη = η   with  
 

( ) ( ) ( )1/2
1  1 1  0−

λ
 η = − σ λ κ − + > − σ λ >  

  .       (47) 

 
Therefore, we finally have  
 

( ) ( ) ( ) ( ) ( )1/2
1

1inf  h h  1 1 ,
2λ λ λ

 η = η = − σ λ κ − + κ −  
      (48) 

 
and consequently we conclude that λLB is the value of λ which 
first makes  ( )inf  hλ λβ − η

  in (40) equal to zero.  
In Fig. 1 we compare our estimates to that obtained in [7] 

for incompressible bodies whose strain energy density depends 
only on the second invariant of the left Cauchy-green stain 
tensor B. The expressions contained [7], but revisited and 
corrected according on how we understand their meaning, may 
be found in [11]. In particular, our estimate is better for thick 
cylinders (approximately 9%), whereas for slender cylinders 
the two estimates practically coincide.  

Although in the above case of uniaxial compression our 
estimate improves the one in [7], the effectiveness of an 
estimate from below arises if one may show that its “distance” 
from the actual critical load is small enough. Here, we have 
compared λLB to the upper bound estimate reported in [7, 

Section 9]. This shows that for slender bodies, where the loss 
of stability is mainly due to geometrical effects and the onset 
of instability is accompanied by relatively small deformations, 
λLB accurately approximates the critical load. On the other 
hand, when an instability is strongly related to the non-linearity 
of the constitutive equation (small slenderness), we have found 
that our lower bound estimate may not represent a good 
approximation of the critical load. Thus, there remains the 
open problem of enhancing lower bound estimates when stable 
large deformations are anticipated. This represents an issue for 
possible future researches. 

 

 
 

Fig. 1 Uniaxial compression for C1 = 0, C2 > 0 : blue line our 

estimate, red line-the estimate in [5]. 

 

IV. CONCLUSIONS 
On the basis of the approach sketched in [20], we have 
developed a new method for determining a lower bound 
estimate of the Hadamard functional based on the Korn 
inequality for Mooney-Rivlin incompressible, isotropic elastic 
solids, with the aim of obtaining an optimal  bound from below 
of the critical load for a homogeneous uniaxial compressive 
loading process. The comparison to other recent proposals 
shows that our procedure is effective and, most of all, it has as 
further advantage the ease for applications. 

We emphasize that our method may be extended to general 
cases of inhomogeneous deformations for different and more 
complex boundary value problems. What still deserves an 
improvement for the current problem of uniaxial compression 
is the estimate of the critical load for thick cylinders, for which 
the instability is basically due to large deformations rather than 
geometrical effects. 

Finally, we underline that our procedure yields a strategy for 
checking if a primary deformation is on the stable “safe side” 
and also a method for establishing which is the first possible 
bifurcation, but this method does not allow to assert if a 
bifurcation mode actually occurs or, in other words, if there 
are actually local branches of post-bifurcating solutions. One 
may refer to [21] in order to find conditions for the existence 
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of local branches of bifurcating solutions within the elliptic 
range, namely the classical strong ellipticity condition and the 
boundary complementing conditions for the fourth-order 
incremental elasticity tensor field which rules the equilibrium 
problem linearized around the bifurcation point. 

Notice that the fulfilment of such conditions gives raise to 
the so-called diffuse bifurcations within the elliptic range, 
which are substantially related both to the geometry of the 
body and to the boundary conditions. Notice that these kinds 
of instabilities basically differ from other bifurcation 
phenomena, like for example the localization due to material 
softening, basically related to the violation of the strong 
ellipticity, which usually may be ascribed to the non-linearity 
of the material response and not to the influence of the 
boundary conditions. 
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